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The effects of viscosity and heat conduction on the propagation of an internal 
wave generated by a simple harmonic localized disturbance are considered for 
the case of an isothermal compressible atmosphere. A similarity solution of the 
linearized equations shows that the velocities decay and the wave width increases 
away from the disturbance. Superpositions of this solution show how a few 
waves of small wavelength attenuate rapidly whereas waves of larger wave- 
length can increase in amplitude as they propagate upwards before eventually 
attenuating. 

1. Introduction 
The propagation of internal waves and acoustic waves in a stably stratified 

compressible non-dissipative atmosphere has been studied by Midgley & Lie- 
mohn (1966), Moore & Spiegel (1964), Tolstoy (1963) and many others (see the 
review by Hines 1972). Most of these authors are interested in the way in which 
a complete spectrum of wave frequencies transfers energy between various 
heights in the atmosphere. Estimates of the effects of viscosity and heat conduc- 
tion were made by Hines (1960) and Pitteway & Hines (1963) and more detailed 
analyses were presented by Yanowitch (1967), who excluded heat conduction, 
Lindzen (1970, 1971) and Liiidzen & Blake (1971). Lindzen’s papers also include 
the effects of hydromagnetic drag and radiation in an atmosphere with arbitrary 
distributions of background temperat.ure. In  these analyses the linearized 
equations are reduced to  ordinary differential equations by considering 
a waveform which is sinusoidal in the horizontal co-ordinate. When the 
frequency of oscillation is less than the natural frequency,f Lindzen’s solu- 
tions for the isothermal atmosphere show that the wave amplitude increases 
with altitude before eventually tending to  a constant value. For frequencies 
which are higher than the natural frequency the amplitudes decrease 
exponentially. 

The present note studies viscous and heat-conduction effects in a two-dimen- 
sional internal wave produced by a localized disturbance of fixed frequency in an 
isothermal atmosphere. The frequency is less than the natural frequency and 
the waves are not sinusoidal in the horizontal direction. The solution is based on 

f That is, the buoyancy, or Brunt-VaisLla frequency. 
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FIGURE 1. Co-ordinate axes. 

that of Thomas & Stevenson (1972) for the waves produced by an oscillating body 
in an incompressible stratified fluid. It will be shown how, as the energy propa- 
gates upwards, the wave increases in width and decreases in amplitude. 

2. Theory 
A horizontal two-dimensional disturbance of frequency w in an unbounded 

isothermal atmosphere will be considered. The disturbance is near the origin of 
a Cartesian co-ordinate system Oxoxo, which is fixed relative to  the undisturbed 
background fluid, with xo measured vertically upwards. It is assumed that the 
atmosphere is a perfect gas, that the acceleration g due to gravity is constant and 
that the effects of rotation are unimportant. Radiation and humidity are not 
included in the analysis. 

p, the inverse of the stratification scale height, is given by 

where the subscript zero refers to the background conditions, p is the density, 
cis the speed of sound and y is the ratio of the specific heats. The equation of state 
is p = pRT, where p is the pressure and T is the temperature. 

A second co-ordinate system Ox’y’ has the x’ axis along the wave and the y’ 
axis in the direction of the inviscid phase velocity. Thus x’ = xo cos 8 + xo sin 8 
and y’ = xo sin 8 - zo cos 8, where 8 is the angle between the Ox‘ and the horizontal. 
The background hydrostatic equations are 

apo/8x’ = -pogsinO, apo/agf = pogcosO. ( 2 )  
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The velocity components are u' and v', the density, pressure and temperature 
are ps, p s  and T, and t' is the time. The perturbation variables are p' = ps-po, 
p' = ps-po, T' = T,  - To, p' = ps-po and k' = k8- k,, where p8 is the viscosity 
and k8 is the thermal conductivity. 

The equation of continuity is 

where 
D a , a  a 

- -+u -+v'-. 
Dt' at' axi ay' 
_ -  

The perturbation momentum equations after subtracting the hydrostatic 
relations are 

and 

A, being the bulk viscosity. The energy equation is 

where @ is the viscous dissipation. 
In  an isothermal atmosphere the hydrostatic equations (2) and the equation of 

state give 
I).=&- (7) 

where the starred variables are constant reference conditions at  x' = y' = 0. 
New (undashed) dimensionless variables are introduced as follows : 

t' = t(Nsine)-l, x' = x(psinO)-l, y' = ya(/3sin6)-1, u' = uagN-l, 

v' = vaagN-l, pi = pap", p' = paap*g(Ptan6)-l, T' = TaT,, 

p' = pap*, k' = kak* 

and the particle displacement from the equilibrium position = Ea(/3sin 6)-l. 
Also a3 = N3v* tan 6 sin 6/2g2 and v* = p*/p*. a is an amplitude coefficient which 
is constant and N = (pg)* is the Brunt-Vaisala frequency. 

The analysis now follows the incompressible solution (Thomas & Stevenson 
1972) and will merely be outlined. It is assumed that 6 must not be near 0 or 
$n. The limitations introduced by these approximations will be discussed later. 

Equations (3)-(6) reduce to 

(u-vacot6)- 

av ap 
O at ay 

r a- = --cos8+pc0t6+O(a~) 
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where ro = po/p* = po/p* and the Prandtl number (T* = ,u*c,/lc*. The equation 
of state becomes 

r,T+p = "XP, (12) 

where 
p*gcote y 

= - cot 8. x =  p*p y - 1  

We look for a solution in which the perturbation variables have a time de- 
pendency e-it. The boundary conditions are that u', v',p',p' and T' and their 
derivatives should approach zero as y'+ +a. We assume that the variables 
may be expanded as u = u, + au, + . . . , v = v,, + av, + . . . , p = p, + ap, + . . . , etc. 
ro may be written as ro = rl(x) +ar,(z, y) + . . . , where from ( 7 )  

r, = exp ( - E) , r, = YY cote exp ( - '"> . 
Y-1 Y-1 Y-1 

Similarly we write 

,uo/,u* = m,(x) +am&, y) + . . . and ko/k* = n,(x) + an2(x, y) + . .. . 
These expansions are substituted into (8)-(12) and terms of like order are 
equated (see Thomas & Stevenson 1972). The resulting equation for p1 is 

If the viscosity and thermal conductivity are assumed to be functions of tem- 
perature only so that m, = n, = 1, then (13) can be written as 

a3(p1ri3)/ay3- ia(p,ri+)/aX = 0, (14) 

where x= ( 1+- d.) y; - I) (exp (y5) - 1) * 

This now has the incompressible form and a similarity solution satisfying the 
boundary conditions and a constant momentum flux condition is 

plry+ = B{X-+f(y)  e-it), (15) 

where 

The dimensioiiless variables take the following forms : 

u, = B?{ - iri*X-*(df/cEy) e-it}, 

p, = - r, Tl = 9ii!{ri~X-Q(df//dy) e-it} 

(17)  

(18) 

and the dimensionless particle displacement is 
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FIGURE 2. The variation of the maximum displacement within the wave and the width of the 
wave with distance from the origin. The width of the wave was evaluated between 7 = & 6. 
co = 295m a-l. /3 = 4.5 x m-l, a = 0.8 x lo-*, a = &u, u* = 0.73,B = 4 5 O ,  N = 2.1 
x rad s-l. The values are taken from the International Standard Atmosphere and 
the origin z' = 0 is a t  11 km. 

The phase velocity is in the direction of increasing 7: the direction pointing 
towards the horizontal level of the disturbance. When (16) and (17) are written 
in terms of x it is seen that the velocity decays as 

and the wave width increases as 

The solution shows that the effects of thermal conduction and viscosity are 
of equal importance. The relative pressure perturbations are several orders of 
magnitude less than the relative density or temperature perturbations. 

The solution is used to calculate the maximum displacement and the wave- 
width variation within an internal wave in the stratosphere and the result is 
shown in figure 2 .  For the stratosphere a is of order and, therefore, the 
assumption that a < 1 is justified. Thomas & Stevenson (1972) discuss the accu- 
racy expected from the theory and using that analysis it is found that the 
major restriction which is important for atmospheric flows is that the nonlinear 
terms should be small compared with the linear terms. For the calculations of 
figure 2, the analysis indicates that the nonlinear terms are important when X I  

is less than 100m. If a smaller value of a were used then the theory could be 
applied closer to the virtual origin of the disturbance, but the allowable ampli- 
tudes throughout the wave would be reduced. Note that a value of x = 1 
corresponds to a real distance X I  of the order of 10 km. 
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FIGURE 3. Displacement profiles on horizontal surfaces at  various heights. The background 
stratification is the same as that in figure 2. The profiles were obtained by superimposing 
five waves which have origins on the same horizontal level with x, = 0,2.5,5.0,  7.5 ,  10.0 m. 
The waves are in phase, have 6’ = $7r and have amplitudes in the ratio 0.5, 1.0, 1.0, 1.0, 
0.5,  respectively. The zero on each of the horizontal scales in the figure corresponds to 

= 0 on the first wave and (a)  x’ = 10 m, ( b )  z’ = 100 m, (c) x‘ = 1 km, ( d )  x’ = 10 km. 
The zeros therefore lie on the line x, = z, (see figure 1). Displacement profiles: -, 
t = -%r- 2 ,  - - -, t = $7~. - - -, displacement envelopes. The vertical height z, is given by 
zo = 2 * X f .  

More realistic wave forms are obtained by superpositions of this solution. 
The way in which a packet of waves from five disturbances propagates and 
changes in amplitude is shown in figure 3. As the waves propagate upwards they 
interact and eventually produce a profile of similar shape to that produced by an 
individual disturbance. The decrease in amplitude with height for t,his wave 
system is compared with that for an individual wave in figure 4 and also with that 
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FIGURE 4. The way in which the maximum displacements in a wave system vary with 
altitude. The background conditions are the same as in figure 2. 6’ = $7~. (a)  One wave. 
(b)  The wave system of figure 3. (c) Maximum displacements in the central region of a wave 
system produced by 20 disturbances with the same frequency and amplitude and at! 2.5 m 
spacing. 

FIGURE 5. The same as figure 4 except that the wave spacing is now 9 m. (a )  1 wave. 
( b )  5 waves. (c) 20 waves. The displacement profile at x‘ = 1 krn with 5 disturbances is the 
same shape as that in figure 3 (a )  except that the wavelength is now 9 m instead of 2.5 m. 

for the central region of a wave system produced by 20 disturbances each sepa- 
rated by 2.5 m. When there are many disturbances the central region of the wave 
system attenuates rapidly, leaving higher amplitudes of oscillation towards the 
outer edges of the system. As the energy propagates upwards the outer peaks 
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FIGURE 6. Variation of the maximum displacement with altitude. x> is chosen so that the 
waves are of the same shape as those in figure 3(a)  a t  the position x'-x; = 0.1 km. 
The wavelengths of the waves a t  this position are (a )  2.5 m, ( b )  9 m, (c) 20 m. The back- 
ground conditions are the same as those in figure 2. 
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FIGURE 6. Variation of the maximum displacement with altitude. x> is chosen so that the 
waves are of the same shape as those in figure 3(a)  a t  the position x'-x; = 0.1 km. 
The wavelengths of the waves a t  this position are (a )  2.5 m, ( b )  9 m, (c) 20 m. The back- 
ground conditions are the same as those in figure 2. 

spread and overlap in the central region and it is this effect which causes an ampli- 
tude increase over certain heights. Figure 5 shows the maximum displacements 
that occur if the disturbances are 9 m apart and in this case both the five- and the 
twenty-disturbance wave systems amplify over certain regions. In  figure 6 
it is shown how waves of small wavelength attenuate more rapidly than waves 
of longer wavelength. 

Small amplitude inviscid solutions for the isothermal atmosphere suggested 
that there is an exponential increase of amplitude with height due to the decreas- 
ing air density, e.g. Lamb (1932). However, the viscous theory of Lindzen for a 
wave system stretching t o  infinity in the horizontal directions showed that the 
amplitudes after initially increasing tend to a constant value. It has now been 
shown how a wave packet consisting of a few waves can widen and eventually 
attenuate a t  sufficiently large altitudes. 

The authors appreciate the discussions with Dr J. A. D. Ackroyd and Mr U. R. 
Klement. J. N. B. was in receipt of a Science Research Council maintenance 
grant. 
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